Data2Vis

Automatic Generation of Data Visualizations Using Sequence-to-Sequence Recurrent Neural Networks.

Victor Dibia

Research Engineer, Cloudera Fast Forward Labs

Çağatay Demiralp Megagon Labs

March 21, 2019

Why Automate Visualizations?

Hint: We want to augment users (new capabilities, improved quality/speed).

Charts can make data more accessible

 Compared to tabular representations of data ..

- Reduced cognitive load
- Effective and expressive

Creating visualizations is **EFFORTFUL**.

Visualization authoring is effortful

2

Hypothesis

Visual Encoding

3

Implementation (code)

- Generating <u>hypothesis</u> and questions regarding data.
- Identifying appropriate visual encoding strategies (chart type, data transformations etc.) that support hypothesis.
- Writing <u>code</u> to implement visualizations

Visualization authoring is effortful

2

Hypothesis

Visual Encoding

3

Implementation (code)

Effective visual encoding and implementation can be challenging for novice users.

- Many (novice) <u>users lack the skills</u> to select appropriate visual encodings and to write code that implement visualizations.
- <u>Automated approaches</u> can help (augment) with tasks 2 and 3.

More so ..

Visualization Recommendation

(CompassQL, Voyager 2, VizML)

Visualization Ranking

(VizDeck, Draco, Deep Eye)

Existing approaches to automated viz are limited.

- Depend on <u>heuristics</u> and <u>hand engineered</u> <u>features</u> which need to be manually updated.
- Does not leverage knowledge codified within <u>existing</u> visualization examples.

A Scalable, learning based approach?

Data2Vis

a (deep) learning based approach to automated visualization

Approach

- Formulate visualization authoring as a machine learning problem.
- Identify data sampling strategies that enable training with (limited) data
- Design metrics that enable evaluation of models
- Present a model that learns to map raw data to generated visualizations.
- Declare that we have solved AGI.

Related Work

Automated Visualization Tools

Automated Visualization

Voyager2

Wongsuphasawat et al 2016

Draco

Moritz et al 2018

Deep Eye

Luo et al 2018

VizML

Hu et al 2018

Recommend visualizations based on partial specifications provided by users.

Recommend univariate and bivariate plots based on a set of enumerated heuristics. Modeling visualization design knowledge as a collection of constraints, learn weights for soft constraints from experimental data. Uses learned binary classifier + learning to rank algorithms to rank visualizations as "Good or Bad" based on examples. Train a model to predict *parts* of visualization specifications visual encoding choices (x,y axis) - using hand engineered features.

Neural Synthesis Models

DNNs for Neural Synthesis

Sketch RNN (Ha et al, 2017)

DNNs for Neural Synthesis

Models that learn human-like creative processes.

- SketchRNN: Generate Stroke based drawings for common objects (Ha et al 2017)
- Text to image synthesis. (Reed et al 2016)
- Google Smart Compose and Smart Reply (Kannan et al 2016)

Code Generation Models

DNNs for Code Generation

Models that learn to generate code.

- **Domain Specific Language Translation** (Yin et al 2017, Zhong et al, 2017)
- Natural Language to SQL (Dong & Lapata 2016, Zhong et al, 2017)
- TCG (trading card games) to Python and Java Language specification. (Ling et al 2016)

-	Table: C	FLDraπ		Question:			
	Pick #	CFL Team	Player	Position	College	How many CFL teams are from York College?	
	27	Hamilton Tiger-Cats	Connor Healy	DB	Wilfrid Laurier	SOL:	
	28	Calgary Stampeders	Anthony Forgone	OL	York	SELECT COUNT CFL Team FROM	
	29	Ottawa Renegades	L.P. Ladouceur	DT	California	CFLDraft WHERE College = "York"	
	30	Toronto Argonauts	Frank Hoffman	DL	York	Besult:	
						2	

Neural Machine Translation Models

DNNs for Machine Translation

- Family of Encoder-Decoder Models that learn mappings from an input sequence to an output sequence. (Britz et al 2017)
- Frequently referred to as Seq2Seq models, but have applications for <u>non-sequential</u> problems
 e.g. Image Captioning, Text Summarization, Code Generation.
- Non-sequential applications are enabled by <u>Bi-Directional RNNs</u> and <u>Attention Mechanisms</u>

DNNs for Machine Translation

BiDirectional RNNs

- Consists of both a forward RNN (reads input sequence and calculates forward hidden states) and a backward RNN (reads input sequence in reverse order and calculates backward hidden states). (Shuster et al 1997).
- Generates an hidden state that is a concatenation of both forward and backward RNNs.

DNNs for Machine Translation

Attention Mechanism

Allows a model to focus on aspects of an input sequence while generating output tokens

- Makes translation models robust to performance degradation while generating lengthy sequences.
- Enables the learning of mappings between source and target sequences of different lengths.
- Allows for interpretability explorations.

Model

Problem Formulation

Data Input data in JSON | { "country": "AUS", "il": "0.058" ..} **Visualization Specification** Vega Lite Spec | { "y": {"field":"gender", "type": ..}

- Formulate as a <u>neural translation problem</u> (sequence to sequence models).
- Learn mappings from <u>raw data</u> to <u>visualization specification</u> in an End-to-End trainable task.

Model Input

Data Input data in JSON | { "country": "AUS", "il": "0.058" ..}

Visualization Specification

Vega Lite Spec | { "y": {"field":"gender", "type": ..}

Model Input

JSON Data (Non-nested)

[{"Time":"152","size":"4.51","treat":"ozone","tree":"1"},{"Time":"174","si ze":"4.98","treat":"ozone","tree":"1"},{"Time":"201","size":"5.41","treat":" ozone","tree":"1"},{"Time":"227","size":"5.9","treat":"ozone","tree":"1"},{ "Time":"258","size":"6.15","treat":"ozone","tree":"1"},{"Time":"152","size ":"4.24","treat":"ozone","tree":"2"},{"Time":"174","size":"4.2","treat":"ozo ne","tree":"2"},{"Time":"201","size":"4.68","treat":"ozone","tree":"2"},{"Ti me":"227","size":"4.92","treat":"ozone","tree":"2"},{"Time":"152","size":" 4.96","treat":"ozone","tree":"2"},{"Time":"152","size":"3.98","treat":"ozo ne","tree":"3"},{"Time":"174","size":"4.36","treat":"ozone","tree":"3"},{"Ti me":"201","size":"4.79","treat":"ozone","tree":"3"},{"Time":"258","size":" 4.99","treat":"ozone","tree":"3"},{"Time":"258","size":"4.36","treat":"ozone","tree":"3"},{"Ti me":"201","size":"4.79","treat":"ozone","tree":"3"},{"Time":"258","size":" 4.99","treat":"ozone","tree":"3"},{"Time":"258","size":" 4.99","treat":"ozone","tree":"3"},{"Time":"258","size":"5.03","treat":"ozo ne","tree":"3"},{"Time":"152","size":"4.36","treat":"ozone","tree":"3"},{"Time":"27","size":"4.36","treat":"ozone","tree::"3"},{"Time":"27","size":"4.36","treat":"ozone","tree::"3"},{"Time":"27","size":"4.36","treat":"ozone","tree::"3"},{"Time":"27","size":"4.36","treat":"ozone","tree::"3"},{"Time":"27","size":"4.36","treat":"ozone","tree::"3"},{"Time":"27","size":"4.36","treat":"ozone","tree::"3"},{"Time":"27","size":"4.36","treat":"ozone","tree::"3"},{"Time":"27","size":"4.36","treat":"ozone","tree::"3"},{"Time":"27","size":"4.36","treat":"ozone","tree::"3"},{"Time":"27","size":"4.36","treat":"ozone","tree::"3"},{"Time":"27","size":"4.36","treat":"ozone","tree::"4"}]

Model Output

Data Input data in JSON | { "country": "AUS", "il": "0.058" ..}

Visualization Specification

Vega Lite Spec | { "y": {"field":"gender", "type": ..}

Model Output

Vega Lite **JSON** specification.

"data": { "url": "data/stocks.csv"}, "mark": "line", "encoding": { "x":{ "field": "date", "type": "temporal", "axis": { "format": "%Y" } }, "v":{ "field": "price", "type": "quantitative" }, "color": { "field": "symbol", "type": "nominal" } } }

AAPL

AMZN

GOOG

IBM

MSFT

Mapping

Data Input data in JSON | { "country": "AUS", "il": "0.058" ..}

Visualization Specification

Vega Lite Spec | { "y": {"field":"gender", "type": ..}

```
[{"Time":"1992","size":"4.51","tre
at":"ozone","tree":"1"}
...
...
...
,{"Time":"1993","size":"4.98","tre
at":"ozone","tree":"1"}]
```

{"encoding": {"detail": {"type": "temporal", "timeUnit": "week", "field": "Time"}, "x": {"type": "quantitative", "field": "size", "bin": true}, "y": {"aggregate": "count", "field": "*", "type": "quantitative"}}, "mark": "area"}

Training Data

- 4300 Vega Lite specifications based on 11 datasets generated using CompassQL (Poco et al 2017).
- CompassQL is based on
 - Heuristics and rules which enumerate cluster and rank visualizations according to known data properties and perceptual considerations.
 - Filtered manually to remove problematic instances
 - 1-3 variables per chart, multiple chart types.
 - "MNIST" for automated visualization experimenbts

Sampling strategy

- Repetitive sampling of datum to visualization.
- Training data is generated by sampling examples
 - Training pair consists of single row from dataset (JSON) and visualization specification (JSON)
 - 50 random pairs selected from each example
 - **Data normalized** (replace field names with normalized values e.g. str0, str1, num0, num1)
 - 215k pairs after sampling

Training Data Pair

Data Input data in JSON | { "country": "AUS", "il": "0.058" ..}

Visualization Specification

Vega Lite Spec | { "y": {"field":"gender", "type": ..}

{"Time":"1993","size":"4.51","trea t":"ozone","tree":"1"} {"encoding": {"detail": {"type":
"temporal", "timeUnit": "week",
"field": "Time"}, "x": {"type":
"quantitative", "field": "size",
"bin": true}, "y": {"aggregate":
"count", "field": "*", "type":
"quantitative"}}, "mark": "area"}

Training Data Transformation

Data Input data in JSON | { "country": "AUS", "il": "0.058" ..} Visualization Specification Vega Lite Spec | { "y": {"field":"gender", "type": ..}

• We apply transformations to the data, replace numeric, string and date fields with short forms num0, str0, dt0.

{"**dt0**":"152","num0":"4.51","str 0":"ozone","num1":"1"} {"encoding": {"detail": {"type":
"temporal", "timeUnit": "week",
"field": "dt0"}, "x": {"type":
"quantitative", "field": "size",
"bin": true}, "y": {"aggregate":
"count", "field": "*", "type":
"quantitative"}}, "mark": "area"}

Training Data Transformation

DataInput data in JSON | { "country": "AUS", "il": "0.058" ..}

Visualization Specification Vega Lite Spec | { "y": {"field":"gender", "type": ..}

- We apply transformations to the data, replace numeric, string and date fields with short forms num0, str0, dt0.
- Transformation provides following benefits
 - Reduce overall vocabulary size
 - Prevent LSTMs from learning specific field names
 - Reduce overall sequence length (faster training, less memory)

Model

Encoder/Decoder Model

Model based on architecture by Britz et al 2017

Model Training

- Character tokenization strategy
- Dropout Rate of 0.5
- Fixed learning rate (0.0001)
- Adam optimizer
- 20,000 steps
- Final log perplexity of 0.032
- Maximum seq length of 500

The training code is based on the Google Seq2Seq implementation (Britz et al 2017)

CLOUDERA DATA SCIENCE WORKBENCH

Accelerate Machine Learning from Research to Production

For data scientists

- Experiment faster Use R, Python, or Scala with on-demand compute and secure CDH data access
- Work together Share reproducible research with your whole team
- Deploy with confidence Get to production repeatably and without recoding

For IT professionals

- Bring data science to the data Give your data science team more freedom while reducing the risk and cost of silos
- Secure by default Leverage common security and governance across workloads
- Run anywhereOn-premises or in the cloud

	File	Edit	View	Navigate	Run	1_python.py	
/spark.py							
/thon.py	1	# Goog	gle Sto	ck Analyt	ics		
oarklyr.R	2	# ====		=========	===		
	3	# # Thi	notoh	ook implo	monto o	strategy that wass Casala	
	4	# 1019	s noted de the	Dow lones	Tndusti	strategy that uses Google	
t Overview 2	6	# cruc	ac the	Dow oones	THURSCI	i tur Average.	
thon.py	7	import	t panda	is as pd			
spark.pv	8	import	t matpl	otlib.pyp	lot as p	plt	
	9	import	t matpl	otlib as	mpl	the state of the state of the state	
isornow.py	10	import	bandas_	nignchart	s.dispia	ay import display_charts	
arklyr.R	12	mpl.ro	Params	['font.fa	milv'l :	= 'Source Sans Pro'	
	13	mpl.ro	Params	['axes.la	belsize	'] = '16'	
	14						
l-T d- D-+	15	# Impo	ort Dat	a			
oogle FrendsData.csv	10	# ====		=			
neans_data.txt	18	# Load	d data	from Goog	le Treno	ds.	
NIST	19				20		
	20	data =	= pd.re	ad_csv(' <mark>d</mark>	ata/Goog	gleTrendsData.csv', index_	
	21	data.h	nead()				
	22	# Show		ve debt	rolatod	query volume	
DME.md	23	displa	av char	ts(data	chart ty	vpe="stock" title="DJTA v	
s	25	seabor	rn.lmpl	.ot("debt"	, "djia	", data=data, size=7)	
DV.	26						
РУ	27	# Dete	ect if	search vo	lume is	increasing or decreasing	
рус	28	# any	given	week by t	orming a	a moving average and testi	
	30	# 0103	sses th	le moving	average	of the past 5 weeks.	
	31	# Let	's firs	t compute	the mov	ving average.	
	32						
	33	data[debt_m	navg'] = d	ata.deb1	t.rolling(window=3, center	
	34	data.h	nead()				
29 24 19 22 24 28 28	36	# Sind	e we w	ant to se	e if the	e current value is above th	
	37	# *pre	eceedin	ig* weeks.	we have	e to shift the moving average	
	38					9	
	39	data[debt_m	navg'] = d	ata.deb	t_mavg.shift(1)	
	40	data.h	nead()				
	41						

=

← Project Sessions -

- Docker/Kubernetes based
- Analyze your data
- Train models (run, track, compare)
- Deploy APIs

1_p

4a.R

data

slide

• Multi tenant, collaborative, secure

Evaluation

Model Evaluation

- Diagnostic Metrics
 - Language Syntax Validity

A measure of how well the model learns the rules of the visualization language (JSON). % of all generated examples that are **valid JSON**

Grammar Syntax Validity

A measure of how well the model learns the visualization grammar (Vega Lite). % of all generated examples that *compile* in Vega Lite.

Beam Search Decoding

- Expands all possible next steps and keeps the k most likely, where k is a user-specified parameter.
- We leverage beam search in generating diverse specifications based on same data.

Qualitative Results

Model learns to generate multivariate and bivariate plots

Model is shown random data from the Rdataset collection not used in training.

Qualitative Results

Model learns to perform selections using categorical fields (yes/no, male/female, state, country etc.)

Model is shown random data from the Rdataset collection not used in training.

Qualitative Results

Beam search decoding (k=15) generates diverse chart types (bar, area, line)

Model is shown random data from the Rdataset collection not used in training.

Quantitative Evaluation

- Evaluation Metrics
 - We train 3 models -
 - No attention (Bidirectional),
 - Attention (Unidirectional),
 - Attention (Bidirectional)
 - Test each model with various values for beam width k (5, 10, 15).
 - Compute mean metric for 100 randomly selected datasets from the Rdataset collection.

Quantitative Evaluation

Evaluation Metrics

	Beam width (k=5)			Beam width (k=10)			Beam width (k=15)			Beam width (k=20)		
	No Attn Attn		No Attn	Attn		No Attn	Attn		No Attn	Attn		
	bi	uni	bi	bi	uni	bi	bi	uni	bi	bi	uni	bi
Language Validity	0.96	0.892	0.826	0.937	0.898	0.897	0.967	0.76	0.901	0.97	0.838	0.878
Grammar Validity	0.304	0.772	0.824	0.487	0.898	0.897	0.628	0.696	0.902	0.63	0.813	0.878

- All models learn to generate valid JSON syntax.
- Bidrectional models perform better than unidirectional models on both metrics on the average.
- Attention based models do significantly better on Grammar metric.
- Attention based BiDirectional Models (with beam width **k=15**) have the best performance for generating valid "plotable" Vega Lite specifications.

Attention Plots

Attention plots show the model learns to pay attention to input data in generating aspects of visualization specification

Example attention plots for a visualization generation case (a) Model learns to pay attention to field name "str" in generating the "string" field type applied to the field. (b) Model learns to pay attention to the field name "num0" and its value in specifying the "quantitative" field type applied to the field

Summary

 Limited Training Data Our current dataset, while sufficient for demonstrating the viability of our approach, has limited coverage of real world use cases.

Phantom Fields

In 10~20% of cases, the model generates specifications with fields not in the dataset. In practice we can detect this at runtime and keep exploring beam search generation until valid specs are generated.

Evaluation

Limitations

Training Data

Our current dataset, while sufficient for demonstrating the viability of our approach, has limited coverage of real world use cases.

Conditioned Generation Current model does not support conditioned visualization generation.

Phantom Fields

In 10~20% of cases, the model generates specifications with fields not in the dataset. In practice we can detect this at runtime and keep exploring beam search generation until valid specs are generated.

Ofcourse ... there are failure cases!

Future Work

Additional Data Collection.

Curating a more diverse dataset that enables training a more robust model.

• Extending Data2Vis to Generate Multiple Plausible Visualizations.

Explore approaches (e.g. conditioned GANs or VAEs) to train a model that generates multiple valid visualizations with specified conditions.

Targeting Additional Grammars

Training models that map input data to multiple different visualization specification languages (e.g. Vega, ggplot2, D3 etc.).

- Natural Language and Visualization Specification Training models that generate visualizations based on natural language text and input data.
- Browser deployment

Javascript library that provides fast generation in the browser.

Summary

Formulating data visualization as a sequence to sequence problem works well. The following insights were useful.

- Transformations which scaffold the learning process.
- Bidirectional RNNs which significantly enable learning complex non-sequential mappings.
- Repetitive sampling and beam search decoding for multiple visualization generation.

Contributions

- Formulate automated visualization as a neural translation problem (map data to visualization specifications)
- End-to-End trainable model for visualization generation
- Training strategy (data generation, transformations etc.)
- Metrics for evaluating End-to-End visualization generation systems
- Sample code and demo

https://github.com/victordibia/data2vis

Code and Trained Model

Github: https://github.com/victordibia /data2vis

Paper: https://arxiv.org/abs/1804.03126

Thanks.

Victor Dibia victor.dibia@gmail.com